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Abstract-Text-to-image generation has seen remarkable 
progress with the emergence of deep learning models like 
Stable Diffusion.These models allow for high
customized image creation. However, conventional 
approaches often require extensive computational resources 
and subject-specific fine- tuning, limiting their scalability and 
accessibility. Instant Imager eliminates this need by 
leveraging in-context learning, enabling the model to 
replicate the capabilities of numerous subject
models. This innovation allows for the instant creation of 
high-flexibility and creative potential. The framework’s 
efficiency is evident in its ability to generate customized 
images 10 times faster than the conventional optimization 
methods, while delivering user specific number of images 
with superior quality. Evolutions on stable
and stable-diffusion-sdxl-turbo datasets highlight its 
performance, consistency outperforming exis
confirmed by generation process. In addition to speed and 
quality, Instant Imager streamlines the image generation 
process, making it an essential tool for artists, designers, and 
content creators. 
 
Keywords:Text-to-Image Generation, Stable 
Context Learning, Stable-diffusion-v1-5, Expert Models, 
High- Fidelity Images. 
 

I.INTRODUCTION 
 

In recent years, text-to-image generation has improved a 
lot, thanks to deep learning models like Stable Diffusion. 
These models allow users to create high
personalized images from text input. This change is 
reshaping digital content creation. 
However, conventional methods typically require extensive 
computational resources and subject-specific fine
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image generation has seen remarkable 
progress with the emergence of deep learning models like 

These models allow for high-quality and 
However, conventional 

approaches often require extensive computational resources 
tuning, limiting their scalability and 

accessibility. Instant Imager eliminates this need by 
context learning, enabling the model to 

replicate the capabilities of numerous subject-specific expert 
models. This innovation allows for the instant creation of 

flexibility and creative potential. The framework’s 
efficiency is evident in its ability to generate customized 

aster than the conventional optimization 
methods, while delivering user specific number of images 
with superior quality. Evolutions on stable-diffusion- v1-5 

turbo datasets highlight its 
performance, consistency outperforming existing models as 

In addition to speed and 
quality, Instant Imager streamlines the image generation 
process, making it an essential tool for artists, designers, and 

Image Generation, Stable Diffusion, In- 
5, Expert Models, 

image generation has improved a 
lot, thanks to deep learning models like Stable Diffusion. 

create high-quality, 
personalized images from text input. This change is 

However, conventional methods typically require extensive 
specific fine- tuning, 

which constrain their scalabil
Recent advances have highlighted the potential of 
integrating multiple expert models to overcome these 
challenges. Drawing inspiration from hybrid approaches in 
other fields [1], our proposed framework
employs in-context learning to amalgamate the capabilities 
of numerous subject-specific models into a single, agile 
system. This approach eliminates the need for individual 
model optimization substantially reducing processing time 
and computational overhead. A k
distinguishing future of Instant Imager is its intuitive user 
interface component-a range bar
dynamically select the precise number of images they wish 
to generate. This feature not only streamlines the image 
generation process but also enhances user interactivity by 
offering granular control over output quantity, making the 
system highly accessible even for non
Experimental evolutions on benchmark datasets including 
Stable-diffusion-v1-5 and Stable
demonstrate that Instant Imager can generate customized 
images up to 10 times faster than conventional optimization 
methods without compromising quality. The range bar 
contributes to the sufficiency by allowing users to directly 
control the output thereby reducing unnecessary 
computation cycles and simplifying the generation 
workflow. 
Furthermore, Instant images represent a significant 
advancement in text-to-image generation by bridging the 
gap between sophisticated in
and user-friendly design. By empowering users with direct 
control over image quantity, the framework not only 
enhances operational efficiency but also democratizes 
access to high quality image synthesis for diverse range of 
creative applications. This work establishes a new 
benchmark for fast, scalable, and customizable image 
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which constrain their scalability and practical deployment. 
Recent advances have highlighted the potential of 
integrating multiple expert models to overcome these 
challenges. Drawing inspiration from hybrid approaches in 
other fields [1], our proposed framework--Instant Imager-- 

context learning to amalgamate the capabilities 
specific models into a single, agile 

system. This approach eliminates the need for individual 
model optimization substantially reducing processing time 
and computational overhead. A key innovation and 
distinguishing future of Instant Imager is its intuitive user 

a range bar-that empowers users to 
dynamically select the precise number of images they wish 
to generate. This feature not only streamlines the image 

tion process but also enhances user interactivity by 
offering granular control over output quantity, making the 
system highly accessible even for non-expert users 
Experimental evolutions on benchmark datasets including 

5 and Stable-Diffusion- SDXL-Turbo, 
demonstrate that Instant Imager can generate customized 
images up to 10 times faster than conventional optimization 
methods without compromising quality. The range bar 
contributes to the sufficiency by allowing users to directly 

the output thereby reducing unnecessary 
computation cycles and simplifying the generation 

Furthermore, Instant images represent a significant 
image generation by bridging the 

gap between sophisticated in-context learning techniques 
friendly design. By empowering users with direct 

control over image quantity, the framework not only 
enhances operational efficiency but also democratizes 
access to high quality image synthesis for diverse range of 

This work establishes a new 
benchmark for fast, scalable, and customizable image 
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generation, opening the door to innovative applications in 
digital art, design, and content creation.  

 
II. RELATED WORKS

 
Text-to-image generation has experienced a transform
evolution over the past decade, driven by the rapid 
advancements in deep learning and generative modeling 
techniques. Early approaches in this domain predominantly 
relied on Generative-Adversarial-Networks (GANs) and 
Variational-Autoencoders (VAEs) to synthesize images 
from textual descriptions. Although GANs and VAEs laid 
the foundational groundwork, they often encountered issues 
such as mode collapse, unstable training dynamics, and 
limitations in generating high-fidelity images
when tasked with producing images from complex or 
nuanced text inputs. 
With the emergence of diffusion-based models, image 
synthesis has undergone a major transformation. These 
models progressively refine a random noise pattern into a 
coherent image through a series of iterative steps.
Models such as DALL-E and CLIP-based approaches 
demonstrated that harnessing large-scale datasets and 
sophisticated training paradigms could overcome many of 
the inherent limitations found in earlier methods. Among 
these, the Stable Diffusion framework has quickly emerged 
as a prominent solution, delivering a compelling balance 
between the image quality and computational efficiency.
Recent iterations of this framework--specifically Stable
Diffusion 3.5-Large-Turbo and Stable Diff
Turbo- represent notable advancements in the field. These 
models have been engineered to enhance image fidelity 
while reducing inference times and computational demands. 
By optimizing network architectures and leveraging large
scale pre-training, these versions address previous 
challenges such as long synthesis times and the need for 
extensive fine-tuning when adapting to a new subjects or 
styles. 
In recent years, researchers have increasingly drawn 
inspiration from in-context learning paradigm
shown remarkable success in natural language processing as 
well as various computer vision applications.
Learning enables a model to leverage the information 
contained in a prompt or context to generate relevant outputs 
without the need for extensive retraining. This approach 
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RELATED WORKS 

image generation has experienced a transformative 
evolution over the past decade, driven by the rapid 
advancements in deep learning and generative modeling 
techniques. Early approaches in this domain predominantly 

Networks (GANs) and 
o synthesize images 

from textual descriptions. Although GANs and VAEs laid 
the foundational groundwork, they often encountered issues 
such as mode collapse, unstable training dynamics, and 

fidelity images—especially 
ed with producing images from complex or 

based models, image 
synthesis has undergone a major transformation. These 
models progressively refine a random noise pattern into a 

series of iterative steps. 
based approaches 

scale datasets and 
sophisticated training paradigms could overcome many of 
the inherent limitations found in earlier methods. Among 

ble Diffusion framework has quickly emerged 
as a prominent solution, delivering a compelling balance 
between the image quality and computational efficiency. 

specifically Stable- 
Turbo and Stable Diffusion-SDXL- 

represent notable advancements in the field. These 
models have been engineered to enhance image fidelity 
while reducing inference times and computational demands. 
By optimizing network architectures and leveraging large- 

ng, these versions address previous 
challenges such as long synthesis times and the need for 

tuning when adapting to a new subjects or 

In recent years, researchers have increasingly drawn 
context learning paradigms, which have 

shown remarkable success in natural language processing as 
well as various computer vision applications.In-Context 
Learning enables a model to leverage the information 
contained in a prompt or context to generate relevant outputs 

need for extensive retraining. This approach 

offers the dual benefits of enhanced scalability and reduced 
computational load. 
In summary while significant strides have been made with 
diffusion-based models especially with advancements such 
as Stable Diffusion, existing approaches still contend with 
challenges related to scalability, efficiency, and 
adaptability. By integrating strengths of in
Instant Imager consolidate the specialized capabilities of 
numerous subject specific expert models
unified system. 

 

III. PROPOSED SYSTEM
To reduce the computational demands of high
image synthesis, we observed that while diffusion models 
can omit details that have minimal impact on human 
perception—thereby requiring fewer loss 
still process every pixel individually. This pixel
computation is both time- and energy
To address this challenge, we split the learning processes 
into two separate phases: a compression phase and a 
generative phase. These methods ultimately 
resolution image generation more practical by significantly 
reducing the computational reso
maintaining the image quality.
A. Perceptual image compression
The perceptual compression model builds on earlier work by 
employing an auto encoder trained with both perceptual and 
patch-based adversarial losses. This approach is
capture high-level, human
ensuring the local image details remain realistic and free 
from blurriness and often associated with simple pixel
losses like L2 or L1. 
To break it down further, let’s
RGB format with dimensions HxWx3. The encoder E 
processes this image and produces a compact latent 
representation z = E(x) that has reduced dimensions h x w x
c. In this process, the encoder downscales the image by a 
factor f (where f = H/h = 
different down sampling factors that are powers of two (i.e., 
f = 2^m with m ∈ ℕ), which provides a structured reduction 
in complexity while preserving essential image details.
One major challenge for compressing images is preventi
the latent space from becoming overly noisy or having 
uncontrolled variance. To tackle this, we integrate two types 
of regularization into our model:
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offers the dual benefits of enhanced scalability and reduced 

In summary while significant strides have been made with 
based models especially with advancements such 

ion, existing approaches still contend with 
challenges related to scalability, efficiency, and 
adaptability. By integrating strengths of in- context learning 
Instant Imager consolidate the specialized capabilities of 
numerous subject specific expert models into a single 

III. PROPOSED SYSTEM 
To reduce the computational demands of high-resolution 
image synthesis, we observed that while diffusion models 
can omit details that have minimal impact on human 

thereby requiring fewer loss calculations—they 
still process every pixel individually. This pixel-by-pixel 

and energy-intensive. 
To address this challenge, we split the learning processes 
into two separate phases: a compression phase and a 
generative phase. These methods ultimately make high- 
resolution image generation more practical by significantly 
reducing the computational resources required while still 
maintaining the image quality. 
A. Perceptual image compression 
The perceptual compression model builds on earlier work by 
employing an auto encoder trained with both perceptual and 

based adversarial losses. This approach is designed to 
level, human-perceptible features while 

ensuring the local image details remain realistic and free 
from blurriness and often associated with simple pixel-based 

let’s consider an input image x in 
RGB format with dimensions HxWx3. The encoder E 
processes this image and produces a compact latent 
representation z = E(x) that has reduced dimensions h x w x 
c. In this process, the encoder downscales the image by a 
factor f (where f = H/h = W/w). We experiment with 
different down sampling factors that are powers of two (i.e., 

ℕ), which provides a structured reduction 
in complexity while preserving essential image details. 
One major challenge for compressing images is preventing 
the latent space from becoming overly noisy or having 
uncontrolled variance. To tackle this, we integrate two types 
of regularization into our model: 
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1. KL Regularization (KL-reg): 
Here a modest Kullback-Leibler divergence penalty is 
imposed on the latest distribution. This penalty gently 
nudges the latent coach towards a standard normal 
distribution much like what is done in Variational 
Autoencoders (VAEs). This regularization helps in 
maintaining a well-behaved latent space without forcing too 
much distortion. 
2. Vector Quantization Regularization (VQ
In this variant we incorporate vector quantization layer 
directly into the decoder. This setup which can be viewed as 
variant of VQGAN, effectively discretizes the latent space. 
By doing so, it captures the essential features in a more 
structured form while reducing the risk of high
outputs. 
The key advantage of our model is that it maintains the two
dimensional spatial structure of the latent space. This is 
particularly beneficial for subsequent diffusion models, 
which are designed to work with such 2D data. 
earlier methods that flatten the latent space into a one
dimensional sequence for autoregressive modeling
resulting in the loss of crucial spatial relationships
approach maintains the inherent spatial structure of the 
image. This allows our compression model to operate with 
relatively mild compression rates while still producing high
quality reconstructions, preserving more details from the 
original image. This not only reduces the computational load 
by operating in a lower-dimensional space but also ensures 
that the compressed representations retain the essential 
characteristics and find details of the original images
B. Latent Diffusion Models 
Diffusion models, as probabilistic frameworks, learn data 
distributions by gradually denoising a normally distributed 
random variable over a series of steps. 
In practice, they similar the reverse process of a fixed lint 
Markov chain where each step gradually cleans up the noise. 
For image synthesis, leading models use a modified version 
of the variational lower bound on the data distribution a 
method similar to denoising score matching. These models 
can interpret equally weighted sequence of denoising 
autoencoders Eθ(xt, t); t = 1. . . T, which are trained to 
predict denoised variant of their input xt, where xt is a noisy 
version of the input x. The corresponding objective can be 
further simplified to, 
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Leibler divergence penalty is 
st distribution. This penalty gently 

nudges the latent coach towards a standard normal 
distribution much like what is done in Variational 
Autoencoders (VAEs). This regularization helps in 

behaved latent space without forcing too 

2. Vector Quantization Regularization (VQ-reg): 
In this variant we incorporate vector quantization layer 
directly into the decoder. This setup which can be viewed as 
variant of VQGAN, effectively discretizes the latent space. 

res the essential features in a more 
structured form while reducing the risk of high-variance 

The key advantage of our model is that it maintains the two-
dimensional spatial structure of the latent space. This is 

uent diffusion models, 
which are designed to work with such 2D data. Unlike 
earlier methods that flatten the latent space into a one-
dimensional sequence for autoregressive modeling—
resulting in the loss of crucial spatial relationships—our 

ins the inherent spatial structure of the 
image. This allows our compression model to operate with 
relatively mild compression rates while still producing high-
quality reconstructions, preserving more details from the 

the computational load 
dimensional space but also ensures 

that the compressed representations retain the essential 
characteristics and find details of the original images 

frameworks, learn data 
distributions by gradually denoising a normally distributed 

In practice, they similar the reverse process of a fixed lint 
Markov chain where each step gradually cleans up the noise. 

synthesis, leading models use a modified version 
of the variational lower bound on the data distribution a 
method similar to denoising score matching. These models 
can interpret equally weighted sequence of denoising 

hich are trained to 
predict denoised variant of their input xt, where xt is a noisy 
version of the input x. The corresponding objective can be 

with t uniformly sampled from {1, …, T}.
Building on this, our approach takes advantage 
perceptual compression model consisting of an Encoder(E) 
and a Decoder(D) that transforms high
into a compact low-dimensional latent space.
 

Figure 1. We condition Latent Diffusion Models (LDMs) 
using either simple concatenation 
flexible and general cross-attention mechanism.

The revised objective for our latent diffusion model 
becomes one where the network implemented as a time 
conditional UNet-is Trained to denoise the latent 
representation z (obtained from 
forward process is fixed, we can efficiently compute the 
noisy latent at each step during training. Once trained, our 
model can generate samples in the latent space which are 
then quickly converted back into full resolution images b
single pass-through decoder D.

 
C. Mechanism of Conditioning
Diffusion models can be adapted to generate images 
conditioned on additional inputs
maps, or other images
distributions of the form p(z 
the standard UNet backbone of our diffusion model by 
incorporating a cross-attention mechanism, allowing the 
model to focus on the most relevant features of the 
conditional input.We first pass the input condition (y) 
through a domain specific encoder τθ that transforms it into 
an immediate representation. This representation is then 
fused into UNet via cross-attention enabling the model to 

nt Computing Systems   

  18 

 

 
with t uniformly sampled from {1, …, T}. 
Building on this, our approach takes advantage of a 
perceptual compression model consisting of an Encoder(E) 
and a Decoder(D) that transforms high-dimensional images 

dimensional latent space. 

 
 

We condition Latent Diffusion Models (LDMs) 
using either simple concatenation of inputs or a more 

attention mechanism. 
 

The revised objective for our latent diffusion model 
becomes one where the network implemented as a time 

is Trained to denoise the latent 
representation z (obtained from encoder E). Because the 
forward process is fixed, we can efficiently compute the 
noisy latent at each step during training. Once trained, our 
model can generate samples in the latent space which are 
then quickly converted back into full resolution images by 

decoder D. 

 

C. Mechanism of Conditioning 
Diffusion models can be adapted to generate images 
conditioned on additional inputs—such as text, semantic 
maps, or other images—by modeling conditional 
distributions of the form p(z | y).To enable this, we modify 
the standard UNet backbone of our diffusion model by 

attention mechanism, allowing the 
model to focus on the most relevant features of the 

We first pass the input condition (y) 
specific encoder τθ that transforms it into 

an immediate representation. This representation is then 
attention enabling the model to 
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guide the denoising process accordingly. Both the UNet and 
the encoder are trained together using pairs of images and 
conditions. 
Based on image-conditioning pairs, we 
conditional LDM via 

 
Both τθand Eθare jointly optimized using Equation (3). 
This conditional mechanism is highly flexible, as τθcan be 
parameterized with domain-specific expert models
example, using unmasked transformers when the 
conditioning input y consists of text prompts.
D. Experiments 
Our experiments demonstrate the Latent Diffusion Models 
(LDM) offer a flexible and efficient approach for 
based image synthesis across various image types. We 
begin by comparing our models by traditional 
diffusion methods examining both training efficiency and 
inference speed. 
Figure 2. We present samples generated by our text
image synthesis model, LDM-8 (KL), trained on the 
LAION [78] dataset. The images were produced using 200 
DDIM sampling steps with η=1.0. We apply unconditional 
guidance [32] with a guidance scale of s=10.
alignment with user-defined text prompts. 
Notably, LDM’s are trained using VQ-regularized latent 
spaces sometimes deliver high quality samples, even though 
their reconstruction performance may be slightly lower 
compared to models with continuous latent spaces.
For a visual comparison of how different regulariz
methods impact LDM training and their ability to 
generalize to higher resolutions (greater than 
In this section, we explore how our latent diffusion models 
(LDMs) behave when using various downsampling factors, 
f ∈ {1, 2, 4, 8, 16, 32}—with LDM-1 being the standard 
pixel-based diffusion model. To ensure a fair comparison, 
all experiments are run on a single NVIDIA A100, with 
each model trained for the same number of steps and using 
the same number of parameters. 
Models with intermediate downsampling levels
specifically LDM-4 to LDM-16—offer a more effective 
balance between training efficiency and the preservation of 
fine image details.Notably, there’s a significant difference 
in performance, with LDM-8 achieving an FID score that is 
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g pairs of images and 
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Both τθand Eθare jointly optimized using Equation (3). 
This conditional mechanism is highly flexible, as τθcan be 

specific expert models—for 
example, using unmasked transformers when the 
conditioning input y consists of text prompts. 

Our experiments demonstrate the Latent Diffusion Models 
(LDM) offer a flexible and efficient approach for diffusion-

image synthesis across various image types. We 
begin by comparing our models by traditional pixel-based 
diffusion methods examining both training efficiency and 

We present samples generated by our text-to-
8 (KL), trained on the 

LAION [78] dataset. The images were produced using 200 
DDIM sampling steps with η=1.0. We apply unconditional 
guidance [32] with a guidance scale of s=10.0 to enhance 

regularized latent 
spaces sometimes deliver high quality samples, even though 
their reconstruction performance may be slightly lower 
compared to models with continuous latent spaces. 
For a visual comparison of how different regularization 
methods impact LDM training and their ability to 
generalize to higher resolutions (greater than 2562). 
In this section, we explore how our latent diffusion models 
(LDMs) behave when using various downsampling factors, 

1 being the standard 
based diffusion model. To ensure a fair comparison, 

all experiments are run on a single NVIDIA A100, with 
each model trained for the same number of steps and using 

pling levels—
offer a more effective 

balance between training efficiency and the preservation of 
Notably, there’s a significant difference 

8 achieving an FID score that is 

38 points lower than the pixel
training steps. 
Figure 3 then shows how sample quality evolves during 2 
million training steps on the ImageNet dataset using class
conditional models. Our observations reveal that very low 
down-sampling factors (LDM
training progress, while excessively high factors result in a 
quick plateau in image quality. We believe this is because 
low factors force the diffusion model to handle most of the 
perceptual compression, whereas very hi
compress the image too much, causing information loss.
Additionally, Figure 4 presents a comparison of models 
trained on both CelebA-HQ and ImageNet, evaluating them 
based on sampling speed (measured using the DDIM 
sampler) and FID scores.The mo
factors between 4 and 8 not only produced better FID 
scores but also sampled images more quickly than the 
pixel-based approach. For complex datasets like ImageNet, 
reducing the compression too much can harm quality, so a 
moderate compression rate is essential.
Additionally, comparisons using the DDIM sampler on both 
CelebA-HQ and ImageNet datasets reveal that these 
moderate down sampling models not only produce better 
image quality but also offer faster sampling speeds. This is 
especially important for complex datasets like ImageNet, 
where too much compression can compromise quality. In 
conclusion, our findings suggest that adopting moderate 
down sampling factors—specifically those used in LDM
and LDM-8—provides an optimal trade
efficiency and image fidelity

Figure 2. Samples generated by our model for user
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wer than the pixel-based LDM-1 after 2 million 

Figure 3 then shows how sample quality evolves during 2 
million training steps on the ImageNet dataset using class- 
conditional models. Our observations reveal that very low 

rs (LDM-1 and LDM-2) lead to slower 
training progress, while excessively high factors result in a 
quick plateau in image quality. We believe this is because 
low factors force the diffusion model to handle most of the 
perceptual compression, whereas very high factors 
compress the image too much, causing information loss. 

Figure 4 presents a comparison of models 
HQ and ImageNet, evaluating them 

based on sampling speed (measured using the DDIM 
The models with downsampling 

factors between 4 and 8 not only produced better FID 
scores but also sampled images more quickly than the 

based approach. For complex datasets like ImageNet, 
reducing the compression too much can harm quality, so a 

pression rate is essential. 
Additionally, comparisons using the DDIM sampler on both 

HQ and ImageNet datasets reveal that these 
models not only produce better 

image quality but also offer faster sampling speeds. This is 
ally important for complex datasets like ImageNet, 

where too much compression can compromise quality. In 
conclusion, our findings suggest that adopting moderate 

specifically those used in LDM-4 
provides an optimal trade-off between 

efficiency and image fidelity 

 
Samples generated by our model for user-
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defined text prompts demonstrate its effectiveness in 
text-to-image synthesis. 

Figure 3: Creative Outputs of Generative Models: From 
Neural Patterns to Whimsical Art

 

Figure 4. This analysis looks at training class
Latent Diffusion Models (LDMs) using different down
sampling factors f over 2 million training steps on th
ImageNet dataset. The pixel-based model LDM
significantly longer to train than models with higher 
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Creative Outputs of Generative Models: From 

Neural Patterns to Whimsical Art 

 
This analysis looks at training class-conditional 

Latent Diffusion Models (LDMs) using different down 
factors f over 2 million training steps on the 

based model LDM-1 takes 
significantly longer to train than models with higher 

downsampling factors, like LDM
LDM-16. However, excessive perceptual compression, as 
observed in LDM-32, results in a decline 
quality. All models were trained under the same 
computational budget on a single NVIDIA A100 GPU. The 
results were obtained using 100 DDIM sampling steps [84] 
with κ=0. 
 

 
Figure 5. This comparison evaluates Latent Diffusion 
Models (LDMs) with varying compression levels on the 
CelebA-HQ (left) and ImageNet (right) datasets. Different 
markers represent DDIM sampling steps {10, 20, 50, 100, 
200}, arranged from right to left along each performance 
curve. A dashed line indicates FID scor
steps, emphasizing the strong performance of LDM
FID scores were computed using 5,000 generated samples. 
All models were trained for 500,000 steps on CelebA
and 2 million steps on ImageNet, each using a single 
NVIDIA A100 GPU. 
E. Conditional Latent Diffusion
1. Transformer and Encoders for LDMs
In this section we explore how integrating transformer 
encoders with cross-attention conditioning expands the 
capabilities of Latent Diffusion 
various conditioning inputs that were previously 
unexplored. For instance, In our text to image experiments 
we train AKL regularized LDM with 1.5 billion parameters 
using language prompts from the LAION
The input text is first tokenized using the BERT tokenizer 
and then passed through the employer transformer module 
τθ to generate a latent representation. This representation is 
then integrated into the UNet architecture via multi

nt Computing Systems   

  20 

 

downsampling factors, like LDM-4, LDM-8, LDM-12, and 
However, excessive perceptual compression, as 

32, results in a decline in overall sample 
quality. All models were trained under the same 
computational budget on a single NVIDIA A100 GPU. The 
results were obtained using 100 DDIM sampling steps [84] 

 

This comparison evaluates Latent Diffusion 
(LDMs) with varying compression levels on the 
HQ (left) and ImageNet (right) datasets. Different 

markers represent DDIM sampling steps {10, 20, 50, 100, 
200}, arranged from right to left along each performance 
curve. A dashed line indicates FID scores at 200 sampling 
steps, emphasizing the strong performance of LDM-{4–8}. 
FID scores were computed using 5,000 generated samples. 
All models were trained for 500,000 steps on CelebA-HQ 
and 2 million steps on ImageNet, each using a single 

E. Conditional Latent Diffusion 
1. Transformer and Encoders for LDMs 
In this section we explore how integrating transformer 

attention conditioning expands the 
capabilities of Latent Diffusion Models (LDM) to handle 

inputs that were previously 
unexplored. For instance, In our text to image experiments 
we train AKL regularized LDM with 1.5 billion parameters 
using language prompts from the LAION-400M dataset. 
The input text is first tokenized using the BERT tokenizer 
nd then passed through the employer transformer module 

to generate a latent representation. This representation is 
then integrated into the UNet architecture via multi-head 
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cross-attention mechanisms. This combination of 
specialized language and visual processing produces a 
robust model that generalizes well to complex user defined 
text prompts as illustrated. Her evolution we follow 
established protocols by text to image generation on the 
MS-COCO validation set. Our model outperforms state
the-art autoregressive and GAN-based techniques, and the 
quality of the generated samples is further improved by 
classifier-free diffusion guiding. In text-to-image synthesis, 
our guided model (LDM-KL-8-G) performs on par with 
state-of-the-art diffusion and autoregressive models, 
although having substantially fewer parameters. We train 
models on the Open Images dataset for semantic layout
image generation then refine them on COCO to illustrate 
the adaptability of our conditioning strategy. We 
additionally test our top class-conditional models on 
ImageNet in accordance with previous studies; the results 
are presented in Table 3 and Section 4. Interestingly, our 
models maintain a significantly lower number of 
parameters and computing needs while outperforming the 
state-of-the-art diffusion model ADM. 
2. Convolutional Sampling Beyond 2562 
We transform our latent fusion models into flexible 
instruments for image-to-image translation by feeding 
spatially aligned conditioning data into the input of our 
denoising network. This approach makes it possible to train 
on a variety of tasks, such as inpainting, super
and semantic synthesis. We employ landscape photos and 
the semantic maps that correlate to them for semantic 
synthesis. In this setup, the latent representation generated 
by our f = 4VQ-regularized model is concatenated with 
down-sampled semantic mappings. Even though 
256^2resolution images are used for training, the model 
performs well at higher resolutions and can produce images 
at megapixel scale when sampling is done convolutionally.
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Table1. Comparison of class
models

 
We further harness this capacity to extend our super 
resolution inpainting models, enabling the fraction of large 
images in the range of 521
noise ratio--affected by the latent space scale plays a critical 
role in quality of the output. Refer to figure below to 
analyze how latent space scale affects the quality of the 
output. 

 
Figure 6. In spatially conditioned tasks like semantic 
synthesis of landscape photos, a Latent Diffusion Model 
(LDM) trained at 256² resolution can handle higher 
resolutions, like 512×1024. 
As explained in Section 3.3, we concatenate low
inputs with the model's input data in order to immediately 
condition our Latent Diffusion Model (LDM) for super
resolution. In our preliminary tests, which follow the SR3 
methodology, we use bicubic interpolation with a 4× down
sampling ratio to degrade images and run ImageNet data 
through the preprocessing pipeli
pretrained autoencoder that was trained using VQ
regularization on the OpenImages dataset and has a 
downsampling factor of f = 4. Since the UNet inputs are 
immediately concatenated with the low
our transformation τθserves as the identity function.
 
Competitive performance is demonstrated by our qualitative 
and quantitative findings (refer to Figure 10 and Table 5). 
Surprisingly, SR3 surpasses our LDM
of the Inception, yet our model has a lower FID sc
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In spatially conditioned tasks like semantic 
ynthesis of landscape photos, a Latent Diffusion Model 

(LDM) trained at 256² resolution can handle higher 
 

As explained in Section 3.3, we concatenate low-resolution 
inputs with the model's input data in order to immediately 
condition our Latent Diffusion Model (LDM) for super-
resolution. In our preliminary tests, which follow the SR3 
methodology, we use bicubic interpolation with a 4× down-
sampling ratio to degrade images and run ImageNet data 
through the preprocessing pipeline of SR3. We use a 
pretrained autoencoder that was trained using VQ-
regularization on the OpenImages dataset and has a 
downsampling factor of f = 4. Since the UNet inputs are 
immediately concatenated with the low-resolution image y, 

erves as the identity function. 

Competitive performance is demonstrated by our qualitative 
and quantitative findings (refer to Figure 10 and Table 5). 
Surprisingly, SR3 surpasses our LDM-SR model in terms 
of the Inception, yet our model has a lower FID score.
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Figure 7. For ImageNet 64→256 super-resolution on the 
ImageNet validation set, LDM-SR excels at generating 
realistic textures, while SR3 demonstrates an advantage in 
producing more coherent fine structural details. Additional 
examples and SR3 outputs can be found in the appendix.
Additionally, we carried out a user trial akin to SR3, in 
which users were shown a low-resolution image along with 
two comparable high-resolution outputs, one produced by a 
pixel-based baseline and the other by our LDM
Participants were requested to express their preference, 
thereby assisting in validating the impressive performance 
of our LDM-SR methodology. 
Our qualitative and quantitative findings (refer
Table 2) underscore the competitive efficacy of the 
algorithm. Importantly, the LDM-SR model registers a 
lower Fréchet Inception Distance (FID) in comparison to 
SR3, even though SR3 achieves a marginally higher 
Inception Score (IS). While direct image regression models 
may yield the highest PSNR and SSIM values, these metrics 
frequently favor smoother, less intricate outputs that do not 
necessarily correspond to the visual quality as perceived by 
human viewers. 

 
Table 2. There are some variations from the results in 
Figure 4 when evaluating inpainting efficiency, mostly 
because of variations in GPU configurations and batch 
sizes. See the supplemental material for further information
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F. Limitations and Societal Impact
While over latent diffusion models (LDMs) significantly 
cut down on computational demands compared to 
traditional pixel-based methods, they still have some 
drawbacks. One key limitation is that their step
sampling process tends to be slower than that of GANs.
Additionally, although our f = 4 auto encoding models 
maintain high image quality, there can be challenges when 
task demand very fine, pixel
reconstruction ability might not capture every minute detail 
perfectly. This issue is also noticeabl
resolution models with seem somewhat constrained when it 
comes to preserving ultra-fine details.
Generative models for image synthesis hold significant 
promise by democratizing access to advanced creative tools 
and lowering the barriers to c
they also pose notable risks. These systems can be exploited 
to produce realistic yet manipulated images contribute to 
the spread of misinformation and deep fakes 
that disproportionately impacts vulnerable groups. Fi
like many deep learning systems, these models can 
inadvertently replicate or even amplify existing biases 
found in the data. Additionally, there is a potential for such 
models to reveal sensitive information from the training 
data, present in the input data rising ethical and privacy 
issues. 
 

IV.CONCLUSION AND FUTURE WORK
 
In this study, we present Instant Imager, a novel latent 
fusion framework that transforms text
by utilizing in-context learning.
Our approach significantly speeds
process producing high-quality, customized images up to 10 
times faster than traditional optimized methods while 
reducing the computational burden.
Our model effectively adapts to a variety of tasks, including 
super-resolution, inpainting, and semantic synthesis, and 
produces visually appealing images by combining Stable 
Diffusion with transformer-
and well-designed encoder-decoder architectures.
experiments on datasets like ImageNet and LAION
demonstrate that instant image achieves competitive 
performance balancing efficiency with high
Furthermore, we have incorporated user driven range bar 
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segment that allows users to select specific images 
according to their preferences adding an extra level of 
control and personalization to the synthesis process. It 
allows users to adjust parameters or choose a specific range 
of outputs the range bar adds significant value offering 
enhanced control and personalization. This makes our 
system not only more accessible but also more responsive 
to the diverse needs of creative professionals.
Future studies will try to improve the model's ability to 
capture fine-grained information and speed up sampling 
even more, which will increase the model's potential for a 
wide range of imaginative and useful applications.
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